Package index
Main functions
Classify cell clusters by transcriptome profiles or gene lists, and building references
-
clustify()
- Compare scRNA-seq data to reference data.
-
clustify_lists()
- Main function to compare scRNA-seq data to gene lists.
-
clustify_nudge()
- Combined function to compare scRNA-seq data to bulk RNA-seq data and marker list
-
clustifyr_methods
- Correlation functions available in clustifyr
-
average_clusters()
- Average expression values per cluster
-
matrixize_markers()
- Convert candidate genes list into matrix
-
cor_to_call()
- get best calls for each cluster
-
cor_to_call_rank()
- get ranked calls for each cluster
-
cor_to_call_topn()
- get top calls for each cluster
-
call_to_metadata()
- Insert called ident results into metadata
-
call_consensus()
- get concensus calls for a list of cor calls
-
sce_pbmc()
- An example SingleCellExperiment object
-
so_pbmc()
- An example Seurat object
-
seurat_meta()
- Function to convert labelled seurat object to fully prepared metadata
-
seurat_ref()
- Function to convert labelled seurat object to avg expression matrix
-
object_ref()
- Function to convert labelled object to avg expression matrix
-
object_loc_lookup()
- lookup table for single cell object structures
-
plot_best_call()
- Plot best calls for each cluster on a tSNE or umap
-
plot_call()
- Plot called clusters on a tSNE or umap, for each reference cluster given
-
plot_cor()
- Plot similarity measures on a tSNE or umap
-
plot_cor_heatmap()
- Plot similarity measures on heatmap
-
plot_dims()
- Plot a tSNE or umap colored by feature.
-
plot_gene()
- Plot gene expression on to tSNE or umap
-
plot_pathway_gsea()
- plot GSEA pathway scores as heatmap, returns a list containing results and plot.
-
plot_rank_bias()
- Query rank bias results
-
cbmc_m
- reference marker matrix from seurat citeseq CBMC tutorial
-
cbmc_ref
- reference matrix from seurat citeseq CBMC tutorial
-
downrefs
- table of references stored in clustifyrdata
-
human_genes_10x
- Vector of human genes for 10x cellranger pipeline
-
mouse_genes_10x
- Vector of mouse genes for 10x cellranger pipeline
-
pbmc_markers
- Marker genes identified by Seurat from single-cell RNA-seq PBMCs.
-
pbmc_markers_M3Drop
- Marker genes identified by M3Drop from single-cell RNA-seq PBMCs.
-
pbmc_matrix_small
- Matrix of single-cell RNA-seq PBMCs.
-
pbmc_meta
- Meta-data for single-cell RNA-seq PBMCs.
-
pbmc_vargenes
- Variable genes identified by Seurat from single-cell RNA-seq PBMCs.
-
run_clustifyr_app()
- Launch Shiny app version of clustifyr, may need to run install_clustifyr_app() at first time to install packages
-
run_gsea()
- Run GSEA to compare a gene list(s) to per cell or per cluster expression data
-
calculate_pathway_gsea()
- Convert expression matrix to GSEA pathway scores (would take a similar place in workflow before average_clusters/binarize)
-
get_best_match_matrix()
- Function to make best call from correlation matrix
-
get_best_str()
- Function to make call and attach score
-
get_common_elements()
- Find entries shared in all vectors
-
get_similarity()
- Compute similarity of matrices
-
get_ucsc_reference()
- Build reference atlases from external UCSC cellbrowsers
-
get_unique_column()
- Generate a unique column id for a dataframe
-
get_vargenes()
- Generate variable gene list from marker matrix
-
assess_rank_bias()
- Find rank bias
-
binarize_expr()
- Binarize scRNAseq data
-
downsample_matrix()
- downsample matrix by cluster or completely random
-
feature_select_PCA()
- Returns a list of variable genes based on PCA
-
file_marker_parse()
- takes files with positive and negative markers, as described in garnett, and returns list of markers
-
find_rank_bias()
- Find rank bias
-
gmt_to_list()
- convert gmt format of pathways to list of vectors
-
make_comb_ref()
- make combination ref matrix to assess intermixing
-
marker_select()
- decide for one gene whether it is a marker for a certain cell type
-
overcluster_test()
- compare clustering parameters and classification outcomes
-
parse_loc_object()
- more flexible parsing of single cell objects
-
pos_neg_marker()
- generate pos and negative marker expression matrix from a list/dataframe of positive markers
-
pos_neg_select()
- adapt clustify to tweak score for pos and neg markers
-
query_rank_bias()
- Query rank bias results
-
ref_feature_select()
- feature select from reference matrix
-
ref_marker_select()
- marker selection from reference matrix
-
reverse_marker_matrix()
- generate negative markers from a list of exclusive positive markers
-
append_genes()
- Given a reference matrix and a list of genes, take the union of all genes in vector and genes in reference matrix and insert zero counts for all remaining genes.
-
assign_ident()
- manually change idents as needed
-
build_atlas()
- Function to combine records into single atlas
-
calc_similarity()
- compute similarity
-
calc_distance()
- Distance calculations for spatial coord
-
check_raw_counts()
- Given a count matrix, determine if the matrix has been either log-normalized, normalized, or contains raw counts
-
collapse_to_cluster()
- From per-cell calls, take highest freq call in each cluster
-
compare_lists()
- Calculate adjusted p-values for hypergeometric test of gene lists or jaccard index
-
cosine()
- Cosine distance
-
gene_pct()
- pct of cells in each cluster that express genelist
-
gene_pct_markerm()
- pct of cells in every cluster that express a series of genelists
-
insert_meta_object()
- more flexible metadata update of single cell objects
-
kl_divergence()
- KL divergence
-
not_pretty_palette
- black and white palette for plotting continous variables
-
object_data()
- Function to access object data
-
overcluster()
- Overcluster by kmeans per cluster
-
percent_clusters()
- Percentage detected per cluster
-
permute_similarity()
- Compute a p-value for similarity using permutation
-
pretty_palette
- Color palette for plotting continous variables
-
pretty_palette2
- Color palette for plotting continous variables, starting at gray
-
pretty_palette_ramp_d()
- Expanded color palette ramp for plotting discrete variables
-
vector_similarity()
- Compute similarity between two vectors
-
write_meta()
- Function to write metadata to object