Package index
Main functions
Classify cell clusters by transcriptome profiles or gene lists, and building references
-
clustify() - Compare scRNA-seq data to reference data.
-
clustify_lists() - Main function to compare scRNA-seq data to gene lists.
-
clustify_nudge() - Combined function to compare scRNA-seq data to bulk RNA-seq data and marker list
-
clustifyr_methods - Correlation functions available in clustifyr
-
average_clusters() - Average expression values per cluster
-
matrixize_markers() - Convert candidate genes list into matrix
-
cor_to_call() - get best calls for each cluster
-
cor_to_call_rank() - get ranked calls for each cluster
-
cor_to_call_topn() - get top calls for each cluster
-
call_to_metadata() - Insert called ident results into metadata
-
call_consensus() - get concensus calls for a list of cor calls
-
sce_pbmc() - An example SingleCellExperiment object
-
so_pbmc() - An example Seurat object
-
seurat_meta() - Function to convert labelled seurat object to fully prepared metadata
-
seurat_ref() - Function to convert labelled seurat object to avg expression matrix
-
object_ref() - Function to convert labelled object to avg expression matrix
-
object_loc_lookup() - lookup table for single cell object structures
-
plot_best_call() - Plot best calls for each cluster on a tSNE or umap
-
plot_call() - Plot called clusters on a tSNE or umap, for each reference cluster given
-
plot_cor() - Plot similarity measures on a tSNE or umap
-
plot_cor_heatmap() - Plot similarity measures on heatmap
-
plot_dims() - Plot a tSNE or umap colored by feature.
-
plot_gene() - Plot gene expression on to tSNE or umap
-
plot_pathway_gsea() - plot GSEA pathway scores as heatmap, returns a list containing results and plot.
-
plot_rank_bias() - Query rank bias results
-
cbmc_m - reference marker matrix from seurat citeseq CBMC tutorial
-
cbmc_ref - reference matrix from seurat citeseq CBMC tutorial
-
downrefs - table of references stored in clustifyrdata
-
human_genes_10x - Vector of human genes for 10x cellranger pipeline
-
mouse_genes_10x - Vector of mouse genes for 10x cellranger pipeline
-
pbmc_markers - Marker genes identified by Seurat from single-cell RNA-seq PBMCs.
-
pbmc_markers_M3Drop - Marker genes identified by M3Drop from single-cell RNA-seq PBMCs.
-
pbmc_matrix_small - Matrix of single-cell RNA-seq PBMCs.
-
pbmc_meta - Meta-data for single-cell RNA-seq PBMCs.
-
pbmc_vargenes - Variable genes identified by Seurat from single-cell RNA-seq PBMCs.
-
run_clustifyr_app() - Launch Shiny app version of clustifyr, may need to run install_clustifyr_app() at first time to install packages
-
run_gsea() - Run GSEA to compare a gene list(s) to per cell or per cluster expression data
-
calculate_pathway_gsea() - Convert expression matrix to GSEA pathway scores (would take a similar place in workflow before average_clusters/binarize)
-
get_best_match_matrix() - Function to make best call from correlation matrix
-
get_best_str() - Function to make call and attach score
-
get_common_elements() - Find entries shared in all vectors
-
get_similarity() - Compute similarity of matrices
-
get_ucsc_reference() - Build reference atlases from external UCSC cellbrowsers
-
get_unique_column() - Generate a unique column id for a dataframe
-
get_vargenes() - Generate variable gene list from marker matrix
-
assess_rank_bias() - Find rank bias
-
binarize_expr() - Binarize scRNAseq data
-
downsample_matrix() - downsample matrix by cluster or completely random
-
feature_select_PCA() - Returns a list of variable genes based on PCA
-
file_marker_parse() - takes files with positive and negative markers, as described in garnett, and returns list of markers
-
find_rank_bias() - Find rank bias
-
gmt_to_list() - convert gmt format of pathways to list of vectors
-
make_comb_ref() - make combination ref matrix to assess intermixing
-
marker_select() - decide for one gene whether it is a marker for a certain cell type
-
overcluster_test() - compare clustering parameters and classification outcomes
-
parse_loc_object() - more flexible parsing of single cell objects
-
pos_neg_marker() - generate pos and negative marker expression matrix from a list/dataframe of positive markers
-
pos_neg_select() - adapt clustify to tweak score for pos and neg markers
-
query_rank_bias() - Query rank bias results
-
ref_feature_select() - feature select from reference matrix
-
ref_marker_select() - marker selection from reference matrix
-
reverse_marker_matrix() - generate negative markers from a list of exclusive positive markers
-
append_genes() - Given a reference matrix and a list of genes, take the union of all genes in vector and genes in reference matrix and insert zero counts for all remaining genes.
-
assign_ident() - manually change idents as needed
-
build_atlas() - Function to combine records into single atlas
-
calc_similarity() - compute similarity
-
calc_distance() - Distance calculations for spatial coord
-
check_raw_counts() - Given a count matrix, determine if the matrix has been either log-normalized, normalized, or contains raw counts
-
collapse_to_cluster() - From per-cell calls, take highest freq call in each cluster
-
compare_lists() - Calculate adjusted p-values for hypergeometric test of gene lists or jaccard index
-
cosine() - Cosine distance
-
gene_pct() - pct of cells in each cluster that express genelist
-
gene_pct_markerm() - pct of cells in every cluster that express a series of genelists
-
insert_meta_object() - more flexible metadata update of single cell objects
-
kl_divergence() - KL divergence
-
not_pretty_palette - black and white palette for plotting continous variables
-
object_data() - Function to access object data
-
overcluster() - Overcluster by kmeans per cluster
-
percent_clusters() - Percentage detected per cluster
-
permute_similarity() - Compute a p-value for similarity using permutation
-
pretty_palette - Color palette for plotting continous variables
-
pretty_palette2 - Color palette for plotting continous variables, starting at gray
-
pretty_palette_ramp_d() - Expanded color palette ramp for plotting discrete variables
-
vector_similarity() - Compute similarity between two vectors
-
write_meta() - Function to write metadata to object