adapt clustify to tweak score for pos and neg markers
Usage
pos_neg_select(
input,
ref_mat,
metadata,
cluster_col = "cluster",
cutoff_n = 0,
cutoff_score = 0.5
)
Arguments
- input
single-cell expression matrix
- ref_mat
reference expression matrix with positive and negative markers(set expression at 0)
- metadata
cell cluster assignments, supplied as a vector or data.frame. If data.frame is supplied then
cluster_col
needs to be set. Not required if running correlation per cell.- cluster_col
column in metadata that contains cluster ids per cell. Will default to first column of metadata if not supplied. Not required if running correlation per cell.
- cutoff_n
expression cutoff where genes ranked below n are considered non-expressing
- cutoff_score
positive score lower than this cutoff will be considered as 0 to not influence scores
Value
matrix of numeric values, clusters from input as row names, cell types from ref_mat as column names
Examples
pn_ref <- data.frame(
"Myeloid" = c(1, 0.01, 0),
row.names = c("CD74", "clustifyr0", "CD79A")
)
pos_neg_select(
input = pbmc_matrix_small,
ref_mat = pn_ref,
metadata = pbmc_meta,
cluster_col = "classified",
cutoff_score = 0.8
)
#> using # of genes: 3
#> similarity computation completed, matrix of 2638 x 1, preparing output
#> Myeloid
#> Naive CD4 T 0.0000000
#> Memory CD4 T 0.7857143
#> CD14+ Mono 0.9208333
#> B 0.0000000
#> CD8 T 0.8210332
#> FCGR3A+ Mono 0.9629630
#> NK 0.8161290
#> DC 0.9218750
#> Platelet 0.0000000