compare clustering parameters and classification outcomes
Usage
overcluster_test(
  expr,
  metadata,
  ref_mat,
  cluster_col,
  x_col = "UMAP_1",
  y_col = "UMAP_2",
  n = 5,
  ngenes = NULL,
  query_genes = NULL,
  threshold = 0,
  do_label = TRUE,
  do_legend = FALSE,
  newclustering = NULL,
  combine = TRUE
)Arguments
- expr
- expression matrix 
- metadata
- metadata including cluster info and dimension reduction plotting 
- ref_mat
- reference matrix 
- cluster_col
- column of clustering from metadata 
- x_col
- column of metadata for x axis plotting 
- y_col
- column of metadata for y axis plotting 
- n
- expand n-fold for over/under clustering 
- ngenes
- number of genes to use for feature selection, use all genes if NULL 
- query_genes
- vector, otherwise genes with be recalculated 
- threshold
- type calling threshold 
- do_label
- whether to label each cluster at median center 
- do_legend
- whether to draw legend 
- newclustering
- use kmeans if NULL on dr or col name for second column of clustering 
- combine
- if TRUE return a single plot with combined panels, if FALSE return list of plots (default: TRUE) 
Examples
set.seed(42)
overcluster_test(
    expr = pbmc_matrix_small,
    metadata = pbmc_meta,
    ref_mat = cbmc_ref,
    cluster_col = "classified",
    x_col = "UMAP_1",
    y_col = "UMAP_2"
)
#> using # of genes: 599
#> similarity computation completed, matrix of 9 x 13, preparing output
#> using # of genes: 599
#> similarity computation completed, matrix of 45 x 13, preparing output
#> Warning: ggrepel: 7 unlabeled data points (too many overlaps). Consider increasing max.overlaps
#> Warning: ggrepel: 8 unlabeled data points (too many overlaps). Consider increasing max.overlaps
