Convert expression matrix to GSEA pathway scores (would take a similar place in workflow before average_clusters/binarize)
Source:R/utils.R
calculate_pathway_gsea.Rd
Convert expression matrix to GSEA pathway scores (would take a similar place in workflow before average_clusters/binarize)
Examples
gl <- list(
"n" = c("PPBP", "LYZ", "S100A9"),
"a" = c("IGLL5", "GNLY", "FTL")
)
pbmc_avg <- average_clusters(
mat = pbmc_matrix_small,
metadata = pbmc_meta,
cluster_col = "classified"
)
calculate_pathway_gsea(
mat = pbmc_avg,
pathway_list = gl
)
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#>
|
| | 0%
|
|======================================================================| 100%
#>
#> n a
#> Naive CD4 T -1.1579075 -1.1633110
#> Memory CD4 T -1.2632236 -1.3145221
#> CD14+ Mono 1.5104606 0.9836238
#> B -1.1353593 1.2163426
#> CD8 T -1.4018615 -0.5521752
#> FCGR3A+ Mono 0.9800621 1.0993582
#> NK -1.4049167 1.0580399
#> DC 1.1234128 -0.8697296
#> Platelet 1.8403415 1.2670729