get top calls for each cluster
Usage
cor_to_call_topn(
cor_mat,
metadata = NULL,
col = "cluster",
collapse_to_cluster = FALSE,
threshold = 0,
topn = 2
)
Arguments
- cor_mat
input similarity matrix
- metadata
input metadata with tsne or umap coordinates and cluster ids
- col
metadata column, can be cluster or cellid
- collapse_to_cluster
if a column name is provided, takes the most frequent call of entire cluster to color in plot
- threshold
minimum correlation coefficent cutoff for calling clusters
- topn
number of calls for each cluster
Examples
res <- clustify(
input = pbmc_matrix_small,
metadata = pbmc_meta,
ref_mat = cbmc_ref,
query_genes = pbmc_vargenes,
cluster_col = "classified"
)
#> using # of genes: 599
#> similarity computation completed, matrix of 9 x 13, preparing output
cor_to_call_topn(
cor_mat = res,
metadata = pbmc_meta,
col = "classified",
collapse_to_cluster = FALSE,
threshold = 0.5
)
#> # A tibble: 18 × 3
#> # Groups: classified [9]
#> classified type r
#> <chr> <chr> <dbl>
#> 1 B B 0.909
#> 2 B CD4 T 0.641
#> 3 CD14+ Mono CD14+ Mono 0.915
#> 4 CD14+ Mono CD16+ Mono 0.892
#> 5 CD8 T NK 0.826
#> 6 CD8 T CD8 T 0.769
#> 7 DC DC 0.849
#> 8 DC CD16+ Mono 0.752
#> 9 FCGR3A+ Mono CD16+ Mono 0.929
#> 10 FCGR3A+ Mono CD14+ Mono 0.843
#> 11 Memory CD4 T CD4 T 0.861
#> 12 Memory CD4 T CD8 T 0.835
#> 13 NK NK 0.894
#> 14 NK CD8 T 0.693
#> 15 Naive CD4 T CD4 T 0.889
#> 16 Naive CD4 T CD8 T 0.871
#> 17 Platelet Mk 0.732
#> 18 Platelet r<0.5, unassigned 0.307