get ranked calls for each cluster
Usage
cor_to_call_rank(
cor_mat,
metadata = NULL,
cluster_col = "cluster",
collapse_to_cluster = FALSE,
threshold = 0,
rename_prefix = NULL,
top_n = NULL
)
Arguments
- cor_mat
input similarity matrix
- metadata
input metadata with tsne or umap coordinates and cluster ids
- cluster_col
metadata column, can be cluster or cellid
- collapse_to_cluster
if a column name is provided, takes the most frequent call of entire cluster to color in plot
- threshold
minimum correlation coefficent cutoff for calling clusters
- rename_prefix
prefix to add to type and r column names
- top_n
the number of ranks to keep, the rest will be set to 100
Examples
res <- clustify(
input = pbmc_matrix_small,
metadata = pbmc_meta,
cluster_col = "classified",
ref_mat = cbmc_ref
)
#> Variable features not available, using all genes instead
#> consider supplying variable features to `query_genes` argument.
#> using # of genes: 599
#> similarity computation completed, matrix of 9 x 13, preparing output
cor_to_call_rank(res, threshold = "auto")
#> using threshold of 0.7
#> # A tibble: 117 × 4
#> # Groups: cluster [9]
#> cluster type r rank
#> <chr> <chr> <dbl> <dbl>
#> 1 B B 0.909 1
#> 2 CD14+ Mono B 0.528 100
#> 3 CD8 T B 0.579 100
#> 4 DC B 0.609 100
#> 5 FCGR3A+ Mono B 0.538 100
#> 6 Memory CD4 T B 0.627 100
#> 7 NK B 0.504 100
#> 8 Naive CD4 T B 0.644 100
#> 9 Platelet B 0.146 100
#> 10 B CD14+ Mono 0.535 100
#> # ℹ 107 more rows