Calculate MDS coordinates based on a beta diversity metric.
Usage
calc_mds(
input,
data_col,
cluster_col,
method = "jaccard",
chain = NULL,
chain_col = global$chain_col,
prefix = "",
return_df = FALSE,
sep = global$sep
)
Arguments
- input
Object containing V(D)J data. If a data.frame is provided, the cell barcodes should be stored as row names.
- data_col
meta.data column containing values to use for calculating pairwise similarity between clusters, e.g. 'clonotype_id'
- cluster_col
meta.data column containing cluster IDs to use for calculating repertoire overlap
- method
Method to use for comparing clusters and calculating MDS coordinates, available methods include:
'jaccard', Jaccard dissimilarity index implemented with
abdiv::jaccard()
'horn_morisita', Horn-Morisita index implemented with
abdiv::horn_morisita()
- chain
Chain to use for comparing clusters. To perform calculations using a single chain, the column passed to the data_col argument must contain per-chain data such as CDR3 sequences. Set to NULL to include all chains.
- chain_col
meta.data column containing chains for each cell
- prefix
Prefix to add to new columns
- return_df
Return results as a data.frame. If set to FALSE, results will be added to the input object.
- sep
Separator used for storing per-chain V(D)J data for each cell
Examples
# Calculate MDS coordinates
res <- calc_mds(
vdj_sce,
data_col = "clonotype_id",
cluster_col = "isotype"
)
# Calculate MDS coordinates based on IGK CDR3 sequences
res <- calc_mds(
vdj_sce,
data_col = "cdr3",
cluster_col = "isotype",
chain = "IGK"
)
# Change the method used for calculating repertoire similarity
res <- calc_mds(
vdj_sce,
data_col = "clonotype_id",
cluster_col = "isotype",
method = "horn_morisita"
)