# A tibble: 5 × 3
chrom start end
<chr> <int> <int>
1 chrII 100248 100289
2 chrII 101292 101393
3 chrII 124916 124949
4 chrII 136181 136264
5 chrII 141070 141121
RNA Bioscience Initiative | CU Anschutz
2024-10-21
Today we’ll look at where two yeast transcription factors bind in the genome using CUT&RUN.
Techniques like CUT&RUN require an affinity reagent (e.g., an antibody) that uniquely recognizes a transcription factor in the cell.
This antibody is added to permeabilized cells, and the antibody associates with the epitope. A separate reagent, a fusion of Protein A (which binds IgG) and micrococcal nuclease (MNase) then associates with the antibody. Addition of calcium activates MNase, and nearby DNA is digested. These DNA fragments are then isolated and sequenced to identify sites of TF association in the genome.
CUT&RUN data were downloaded from the NCBI GEO page for Skene et al.
I selected the 16 second time point for S. cerevisiae Abf1 and Reb1 (note the paper combined data from the 1-32 second time points).
BED files containing mapped DNA fragments were separated by size and converted to bigWig with:
# separate fragments by size
awk '($3 - $2 <= 120)' Abf1.bed > CutRun_Abf1_lt120.bed
awk '($3 - $2 => 150)' Abf1.bed > CutRun_Abf1_gt150.bed
# for each file with the different sizes
bedtools genomecov -i Abf1.bed -g sacCer3.chrom.sizes -bg > Abf1.bg
bedGraphToBigWig Abf1.bg sacCer3.chrom.sizes Abf1.bw
The bigWig files are available here in the data/
directory.
# A tibble: 5 × 3
chrom start end
<chr> <int> <int>
1 chrII 100248 100289
2 chrII 101292 101393
3 chrII 124916 124949
4 chrII 136181 136264
5 chrII 141070 141121
There are two major approaches to defining sequence motifs enriched in a sample: enumerative and probabilistic approaches.
Here we’ll apply a probabilistic approach (GADEM) to discover motifs in a collection of DNA sequences. During the RNA block, you’ll learn about k-mer analysis, which is a form of enumerative approach.
In each case, the goal is to define a set of sequence motifs that are encriched in a set of provided sequences (i.e., peaks from CUT&RUN data) relative to a genomic background.
Motifs are expressed in a Position Weight Matrix, which captures the propensities for a position to be a particular nucleotide in a sequence motif.
These PWMs can be represented as sequence logos, visually represent the amount of information provided by the motif, typically using “information content”, expressed in bits.
We’ll use the rGADEM package from Bioconductor to derive sequence motifs from the peaks we called above. This is a straightforward process:
rGADEM::GADEM()
, which runs uses an Expectation-Maximization (EM) approach to identify and refine motifs.seqLogo::seqLogo()
.peak_seqs <- BSgenome::getSeq(
# provided by BSgenome.Scerevisiae.UCSC.sacCer3
Scerevisiae,
peak_calls_gr
)
# takes ~2 minutes to run
gadem <- rGADEM::GADEM(
peak_seqs,
genome = Scerevisiae,
verbose = 1
)
*** Start C Programm ***
==============================================================================================
input sequence file:
number of sequences and average length: 452 114.8
Use pgf method to approximate llr null distribution
parameters estimated from sequences in:
number of GA generations & population size: 5 100
PWM score p-value cutoff for binding site declaration: 2.000000e-04
ln(E-value) cutoff for motif declaration: 0.000000
number of EM steps: 40
minimal no. sites considered for a motif: 22
[a,c,g,t] frequencies in input data: 0.281618 0.218382 0.218382 0.281618
==============================================================================================
*** Running an unseeded analysis ***
GADEM cycle 1: enumerate and count k-mers... top 3 4, 5-mers: 10 32 58
Done.
Initializing GA... Done.
GADEM cycle[ 1] generation[ 1] number of unique motif: 4
spacedDyad: cgtgnnnnnnnnnncgacg motifConsensus: nwnrTCAynnnnnACGrnn 0.60 fitness: -425.76
spacedDyad: tttcnnnnnnnnttcg motifConsensus: wyTTTTTTyTTTTTyk 0.90 fitness: -134.01
spacedDyad: aaatnnnnncttcc motifConsensus: AymArGTTACTTCC 0.10 fitness: -41.29
spacedDyad: ttttgnnnaaaat motifConsensus: sTTGkACkAAAAT 0.10 fitness: -30.86
GADEM cycle[ 1] generation[ 2] number of unique motif: 4
spacedDyad: catcnnnnnnnncgacg motifConsensus: nrTCAyywnnnACGrnn 0.90 fitness: -459.04
spacedDyad: ttttnnnnnnnnncggc motifConsensus: yTTTTTTyTTTTTykky 0.90 fitness: -142.43
spacedDyad: aaatnnnnncttcc motifConsensus: AymArGTTACTTCC 0.10 fitness: -41.29
spacedDyad: ttttgnnnaaaat motifConsensus: sTTGkACkAAAAT 0.10 fitness: -30.86
GADEM cycle[ 1] generation[ 3] number of unique motif: 5
spacedDyad: catcnnnnnnnncgacg motifConsensus: nrTCAyywnnnACGrnn 0.90 fitness: -459.04
spacedDyad: ttttnnnnnnnnncggc motifConsensus: yTTTTTTyTTTTTykky 0.90 fitness: -142.43
spacedDyad: aaatnnnnncttcc motifConsensus: AymArGTTACTTCC 0.10 fitness: -41.29
spacedDyad: ttttgnnnaaaat motifConsensus: sTTGkACkAAAAT 0.10 fitness: -30.86
spacedDyad: cgtcnnnnnnnnncacg motifConsensus: mGACmymdTCAyCCACG 0.10 fitness: -11.04
GADEM cycle[ 1] generation[ 4] number of unique motif: 5
spacedDyad: ccgtnnnnnnnntca motifConsensus: yCGTnnnwrrTGAyn 0.90 fitness: -472.08
spacedDyad: ttttnnnnnnnnncggc motifConsensus: yTTTTTTyTTTTTykky 0.90 fitness: -142.43
spacedDyad: aaatnnnnncttcc motifConsensus: AymArGTTACTTCC 0.10 fitness: -41.29
spacedDyad: ttttgnnnaaaat motifConsensus: sTTGkACkAAAAT 0.10 fitness: -30.86
spacedDyad: cgtcnnnnnnnnncacg motifConsensus: mGACmymdTCAyCCACG 0.10 fitness: -11.04
GADEM cycle[ 1] generation[ 5] number of unique motif: 5
spacedDyad: ccgtnnnnnnnntca motifConsensus: yCGTnnnwrrTGAyw 1.00 fitness: -476.24
spacedDyad: ttttnnnnnnnnncggc motifConsensus: yTTTTTTyTTTTTykky 0.90 fitness: -142.43
spacedDyad: aaatnnnnncttcc motifConsensus: AymArGTTACTTCC 0.10 fitness: -41.29
spacedDyad: ttttgnnnaaaat motifConsensus: sTTGkACkAAAAT 0.10 fitness: -30.86
spacedDyad: cgtcnnnnnnnnncacg motifConsensus: mGACmymdTCAyCCACG 0.10 fitness: -11.04
*** Running an unseeded analysis ***
GADEM cycle 2: enumerate and count k-mers... top 3 4, 5-mers: 10 20 30
Done.
Initializing GA... Done.
GADEM cycle[ 2] generation[ 1] number of unique motif: 4
spacedDyad: ggaaannnnnnnttc motifConsensus: GGAmATATwGCmTmT 0.10 fitness: -49.91
spacedDyad: ggtgcnnntttg motifConsensus: rGkGGrAswTTG 0.10 fitness: -9.35
spacedDyad: tttcannnnnnnaaaag motifConsensus: nsTCAmACwGrmAAwmw 1.00 fitness: -6.73
spacedDyad: caaannnnnnnnnngcggc motifConsensus: sAwAAATGTwTkrysCsGm 0.10 fitness: -6.29
GADEM cycle[ 2] generation[ 2] number of unique motif: 4
spacedDyad: gaannnnnnnnnnttttc motifConsensus: CmrAyAkrmAAwAwTTCC 0.30 fitness: -86.10
spacedDyad: ggtgcnnntttg motifConsensus: rGkGGrAswTTG 0.10 fitness: -9.35
spacedDyad: caaannnnnnnnnngcggc motifConsensus: sAwAAATGTwTkrysCsGm 0.10 fitness: -6.29
spacedDyad: tttgnnnnnntgg motifConsensus: TTTkTywkwsTGr 0.10 fitness: -6.22
GADEM cycle[ 2] generation[ 3] number of unique motif: 4
spacedDyad: gaannnnnnnnnnttttc motifConsensus: CmrAyAkrmAAwAwTTCC 0.30 fitness: -86.10
spacedDyad: ggtgcnnntttg motifConsensus: rGkGGrAswTTG 0.10 fitness: -9.35
spacedDyad: caaannnnnnnnnngcggc motifConsensus: sAwAAATGTwTkrysCsGm 0.10 fitness: -6.29
spacedDyad: tttgnnnnnntgg motifConsensus: TTTkTywkwsTGr 0.10 fitness: -6.22
GADEM cycle[ 2] generation[ 4] number of unique motif: 4
spacedDyad: gaannnnnnnnnnttttc motifConsensus: CmrAyAkrmAAwAwTTCC 0.30 fitness: -86.10
spacedDyad: gaaaannnnnnnnttc motifConsensus: AAAAAkGyAwTAyyyC 0.20 fitness: -21.81
spacedDyad: ccttgnnnnnnnnnnaaatg motifConsensus: yyTTTTymTAsTGkGAmATT 0.10 fitness: -12.64
spacedDyad: ggtgcnnntttg motifConsensus: rGkGGrAswTTG 0.10 fitness: -9.35
GADEM cycle[ 2] generation[ 5] number of unique motif: 7
spacedDyad: gaannnnnnnnnnttttc motifConsensus: CmrAyAkrmAAwAwTTCC 0.30 fitness: -86.10
spacedDyad: tttttnnnnnnnnngcgg motifConsensus: TwwTwCnwTykTrsGmGA 0.20 fitness: -44.11
spacedDyad: gaaaannnnnnnnttc motifConsensus: AAAAAkGyAwTAyyyC 0.20 fitness: -21.81
spacedDyad: ccttgnnnnnnnnnnaaatg motifConsensus: yyTTTTymTAsTGkGAmATT 0.10 fitness: -12.64
spacedDyad: ttcnnnnnnnnaaa motifConsensus: sTCAsACTrwmAAA 0.20 fitness: -10.44
spacedDyad: caaannnnnnnnnnaaatg motifConsensus: mAAwsTyCymmhmArrAAA 0.80 fitness: -10.18
spacedDyad: tttgnnnnnngcggc motifConsensus: wyTGksTGryGCGsC 0.10 fitness: -2.96
*** Running an unseeded analysis ***
GADEM cycle 3: enumerate and count k-mers... top 3 4, 5-mers: 8 16 22
Done.
Initializing GA... Done.
GADEM cycle[ 3] generation[ 1] number of unique motif: 1
spacedDyad: cggcnnctttt motifConsensus: CGGCCTykTsT 0.10 fitness: 18.49
GADEM cycle[ 3] generation[ 2] number of unique motif: 1
spacedDyad: cggcnnctttt motifConsensus: CGGCCTykTsT 0.10 fitness: 18.49
GADEM cycle[ 3] generation[ 3] number of unique motif: 1
spacedDyad: tggtgnnnnnnncgcc motifConsensus: TGGwrAyTTykGyksk 0.10 fitness: 13.43
GADEM cycle[ 3] generation[ 4] number of unique motif: 1
spacedDyad: cggcctttt motifConsensus: CGGCCTTGT 0.10 fitness: 9.00
GADEM cycle[ 3] generation[ 5] number of unique motif: 1
spacedDyad: cggcctttt motifConsensus: CGGCCTTGT 0.10 fitness: 9.00
*** Running an unseeded analysis ***
GADEM cycle 4: enumerate and count k-mers... top 3 4, 5-mers: 4 16 22
Done.
Initializing GA... Done.
GADEM cycle[ 4] generation[ 1] number of unique motif: 1
spacedDyad: ccatcgcacc motifConsensus: ACATTGCACy 0.10 fitness: 24.22
GADEM cycle[ 4] generation[ 2] number of unique motif: 1
spacedDyad: ccatcgcacc motifConsensus: ACATTGCACy 0.10 fitness: 24.22
GADEM cycle[ 4] generation[ 3] number of unique motif: 1
spacedDyad: ccatcgcacc motifConsensus: ACATTGCACy 0.10 fitness: 24.22
GADEM cycle[ 4] generation[ 4] number of unique motif: 1
spacedDyad: gaannnnnnnnngccg motifConsensus: kAATkkkwTkrTGCsG 0.10 fitness: 19.67
GADEM cycle[ 4] generation[ 5] number of unique motif: 1
spacedDyad: gaannnnnnnnngccg motifConsensus: kAATkkkwTkrTGCsG 0.10 fitness: 19.67
[1] "yCGTnnnwrrTGAyn" "yTkTTTTyTyTTTyk"
[3] "AmsyTAkATCkTTGkACTAAAATCTGykwCwm" "nAAnwwmGACmCATTCACCCACGsnnynynm"
[5] "yCmwmyAkrmAAwAwTTCCy" "nAAAAATGTAwTAyCyC"
[7] "ACGGCCTTGTs"
[1] 436 152 33 31 94 41 47
Now let’s look at the sequence logo for the top hit.
Does this motif make sense, based on what you know about the requirements and specificity of DNA binding by transcription factors?
How might you confirm that a specific sequence (that conforms to a motif) is bound directly by a transcription factor?
GADEM: a genetic algorithm guided formation of spaced dyads coupled with an EM algorithm for motif discovery. J Comput Biol 2009 [PMC free article] [PubMed] [Google Scholar]
Course website: https://rnabioco.github.io/molb-7950