get best calls for each cluster
Usage
cor_to_call(
cor_mat,
metadata = NULL,
cluster_col = "cluster",
collapse_to_cluster = FALSE,
threshold = 0,
rename_prefix = NULL,
carry_r = FALSE
)
Arguments
- cor_mat
input similarity matrix
- metadata
input metadata with tsne or umap coordinates and cluster ids
- cluster_col
metadata column, can be cluster or cellid
- collapse_to_cluster
if a column name is provided, takes the most frequent call of entire cluster to color in plot
- threshold
minimum correlation coefficent cutoff for calling clusters
- rename_prefix
prefix to add to type and r column names
- carry_r
whether to include threshold in unassigned names
Examples
res <- clustify(
input = pbmc_matrix_small,
metadata = pbmc_meta,
cluster_col = "classified",
ref_mat = cbmc_ref
)
#> Variable features not available, using all genes instead
#> consider supplying variable features to `query_genes` argument.
#> using # of genes: 599
#> similarity computation completed, matrix of 9 x 13, preparing output
cor_to_call(res)
#> # A tibble: 9 × 3
#> # Groups: cluster [9]
#> cluster type r
#> <chr> <chr> <dbl>
#> 1 B B 0.909
#> 2 CD14+ Mono CD14+ Mono 0.915
#> 3 FCGR3A+ Mono CD16+ Mono 0.929
#> 4 Memory CD4 T CD4 T 0.861
#> 5 Naive CD4 T CD4 T 0.889
#> 6 DC DC 0.849
#> 7 Platelet Mk 0.732
#> 8 CD8 T NK 0.826
#> 9 NK NK 0.894