Average expression values per cluster
Usage
average_clusters(
mat,
metadata,
cluster_col = "cluster",
if_log = TRUE,
cell_col = NULL,
low_threshold = 0,
method = "mean",
output_log = TRUE,
subclusterpower = 0,
cut_n = NULL
)
Arguments
- mat
expression matrix
- metadata
data.frame or vector containing cluster assignments per cell. Order must match column order in supplied matrix. If a data.frame provide the cluster_col parameters.
- cluster_col
column in metadata with cluster number
- if_log
input data is natural log, averaging will be done on unlogged data
- cell_col
if provided, will reorder matrix first
- low_threshold
option to remove clusters with too few cells
- method
whether to take mean (default), median, 10% truncated mean, or trimean, max, min
- output_log
whether to report log results
- subclusterpower
whether to get multiple averages per original cluster
- cut_n
set on a limit of genes as expressed, lower ranked genes are set to 0, considered unexpressed
Examples
mat <- average_clusters(
mat = pbmc_matrix_small,
metadata = pbmc_meta,
cluster_col = "classified",
if_log = FALSE
)
mat[1:3, 1:3]
#> Naive CD4 T Memory CD4 T CD14+ Mono
#> PPBP 0.01892718 0.02607889 0.08947514
#> LYZ 0.65070360 0.67842980 1.80412017
#> S100A9 0.22047491 0.26729285 1.71088164